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A linear stability analysis is presented for flow between concentric cylinders when a 
fully developed axial flow is present. Small perturbations are assumed to be non- 
axisymmetric. This leads to an eigenvalue problem with four eigenvalues: the critical 
Taylor number, an amplification factor and two wavenumbers. The presence of the 
tangential wavenumber permits prediction of the stability of spiral flow. This made 
it possible to model the flow more accurately and to extend the range of calculations 
t,o higher axial Reynolds numbers than had previously been attainable. Calculations 
were carried out for radius ratios from 0.95 to 0.1, Reynolds numbers as large as 300 
and cases with co-rotation and counter-rotation of the cylinders. 

1. Introduction 
Since G. I. Taylor (1923) predicted analytically the onset of instability in a Couette 

flow between coaxial rotating cylinders and demonstrated the validity of his results 
by a simple experiment, considerable research on the problem has been conducted 
bot,h analytically and experimentally. When an axial flow is superimposed on the 
Couette flow, the problem becomes more complicated. This combined flow, so-called 
Couette-Poiseuille flow, occurs in numerous existing or proposed design applications. 

Kaye & Elgar (1958) observed that four principal modes of flow exist: laminar, 
turbulent, laminar with vortices and turbulent with vortices. Numerous investigations 
have since been conducted to establish the effect of important variables on the occur- 
rence of Taylor vortices in a laminar flow. The critical Taylor number Tu, is determined 
as a function of the axial Reynolds number Re, the radius ratio N ,  the speed ratio of 
cylinder rotation ,LL and, in the case of developing flows, the inlet length L. In  the 
1960s and 1970s experimental studies were conducted with radius ratios of 0.89 N 0.96 
by Donnelly & Fultz (1960), Snyder (1962; 1965) and Coney & Mobbs (1970). Astill 
(1964) extended the work by Kaye & Elgar (1958) to developing flow. In  the same 
period, several investigators studied the problem analytically, including Chandra- 
sekhar (1960, 1962), DiPrima (1960)) Krueger & DiPrima (1964), Datta (1965), 
Hughes & Reid (1968) and Elliot (1973). 

The analytical studies to date have incorporated two main assumptions: (a )  small 
gap, R, - Rl < $(R, + R,), and (b)  linear perturbation theory with axisymmetric 
perturbations. Solutions were limited to small Reynolds numbers with the exception 
of Hughes & Reid (1968). It is known from experiments that for Reynolds numbers 
above 15 N 20 the vortices are no longer toroidal but form pairs of spirals. 
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The objective of the present study is to determine the critical Taylor numbers and 
the associated eigenvalues for fully developed flows in a concentric annulus of arbitrary 
radius ratio with one or both cylinders rotating. In  order to represent the known 
physical behaviour and to extend the solution to higher Reynolds numbers, per- 
turbations were assumed to be non-axisymmetric. While the present results are for 
fully developed axial flows, the formulation and solution method are equally applicable 
to developing flow, which is likely to be more important in applications. The fully 
developed solution is numerically simpler and provides a lower bound on the critical 
Taylor number for a given flow system. 

2. Formulation of the problem 
The Navier-Stokes and continuity equations are written in cylindrical co-ordinates 

for an incompressible fluid with constant viscosity in the absence of body forces. The 
equations are somewhat simplified by introducing a circulation function and then 
made non-dimensional by normalizing velocities with the mean axial velocity w, 
lengths with the gap width b ( =  R,- Rl ) ,  pressures with pv2 and time with b / w .  R, 
and R, are the radii of the inner and outer cylinders respectively and p is the fluid 
density. Linearization of the equations follows the usual procedure fully described by 
Chandrasekhar (1961), in which the velocities and pressure in the unstable flow are 
each expressed as the sum of their form in steady flow and a small perturbation. With 
9' representing any of the perturbations, u' corresponding to the radial velocity, w' 
to the axial velocity and v' to a circulation function, a three-dimensional perturbation 
$'(t, r ,  8, z )  is assumed to have the form 

9' = &r) exp {i(ct +no + hz)}, (1)  

where 6 is a complex amplitude function, and cr, n and h are called the amplification 
factor, the tangential wavenumber and the axial wavenumber respectively. At the 
onset of oscillatory instability, CT should be real so that the time amplification is 
bounded. Also, for spatially bounded motion of the perturbation flow the wave- 
numbers n and h must be real, and furthermore n must be an integer. Introducing the 
perturbations u', v', w' and p' into the linear equations and eliminating the amplitude 
function j3 of the perturbation pressure, the momentum equations become 

d&Jdr = A ,  t2 + A,$ + A ,  iÔ, +A,& + A,&, + A6&,, 

dO,/dr = A,& + A,$ +A,@,  + A,,& + A,, &, +A,,&,. 

d.iildr = A,, t2 +A,,  8 +A,,  &. 

(2) 

(3) 

(4) 

The continuity equation is expressed in the form 

The variable coefficients A,  ( j  = 1, 2, . . . ,12)  are complex and contain the steady parts 
of the velocities, the Reynolds number, defined as Re = w b / v ,  and the eigenvalues. 
The subscripts 1 and 2 on t2,5 and 8 indicate the order of ordinary derivatives with 
respect to r of these amplitude functions. Accordingly, three additional relationships 
are 

Equations (2)-(5) constitute a set of first-order, linear, ordinary, homogeneous 

dOJdr = 8,, d&Jdr = a,, d&,ldr = &,, ( 5 )  
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differential equations with variable coefficients. Each variable and coefficient can be 
expressed in terms of a real and imaginary part: 

6 = $+i$, $ = u,v,w,  
A,  = A,+iJ,, j = 1,2, ..., 12. 

Substituting (6) into the equations and separating the real and imaginary parts leads 
to a set of twelve real differential equations in twelve unknowns. The Taylor number, 
defined as Ta = R, R, blv, is in most instances hidden in the coefficients A, and A,. 
In  order to include the Taylor number explicitly, partial renormalization of the steady 
part of the dimensional circulation function with R, R, instead of w is necessary, 
where R, is the angular speed of the inner cylinder. For a complete development of the 
equations see Chung (1976). 

To complete the statement of the problem, twelve boundary conditions for the 
perturbation velocities are required. The no-slip condition holds at the walls: 

(7), (8) 
A shooting procedure was employed in which the problem is treated as an initial-value 
problem at r = r,. Six additional boundary conditions are assumed at r, and the 
solution repeatedly marched to r2 until the terminal boundary conditions (8) are 
satisfied with trial eigenvalues. The difficult task of guessing the correct missing 
boundary conditions at rl can be avoided if each perturbation velocity is expressed 
as a linear combination of component velocities with undetermined coefficients 
C, ( j  = 1,2, ..., 6 )  (Sparrow, Munro & Jonsson 1964): 

- u = C = V = B = e = $ = O  at r = r l , r 2 .  

R fi - 

I Wi = 11 c,q, Gi = 11 C,8$, i = 0,1,2,  
i= 1 1=1 

I 6 6 

j =  1 1=1 
Vi = 11 C,$, Bi = 11 c,@, i = 0,1, (9) 

J 6 6 

j =  1 j= 1 
;ii = Ci;i$, ai = CjC& i = 0. 

Shooting is carried out first for j = 1, with initial boundary conditions El = 1 and 
B, = @, = Gl = 8, = W, = 0 in addition to the initial conditions ( 7 )  a t  r,, then for j = 2 
with 5, = 1 and El = W, = 8, = W, = 8, = 0 with (7). Similarly, shooting continues 
for j = 3 with El = 1 and the other velocities zero and so on. Summation of the six 
component velocities after completion of the shooting leads to a set of solutions for 
the unknowns which could be solved identically with additional boundary conditions 
v1 = C,, 5, = C,, W1 = C3, Gl = C,, @, = C5 and 8, = c8 at rl if C,, C,, . . ., cl, were known. 

Since the differential equations are linear and homogeneous, the solution modes for 
each shooting are independent of the magnitude of the C,. Therefore the terminal 
boundary conditions (8) lead to six linear algebraic homogeneous equations, which 
in matrix form are 

- 

51 5 2  5 3  5 4  5 5  Q 

53 j74 5 5  56 = 0 at  r = r,. 
El @2 @3 @4 @5 W0 

8 1  $2 $3 $4 $6 $6 

22-2 



644 K .  C. Chung and K .  N .  Astill 

A non-trivial solution for the Cj requires the determinant of the 6 x 6 matrix to vanish. 
Notice that the characteristic equation in (10) is independent of the coefficients. 

Solutions for a particular geometry and Reynolds number are obtained by first 
introducing a trial set of eigenvalues Ta, u, nand A. Using a fourth-order Runge-Kutta 
scheme, shooting is performed six times, once for each component group. The deter- 
minant can then be evaluated. If the determinant vanishes, a set of modes has been 
found with a group of probable eigenvalues. The critical Taylor number is identified as 
the smallest Taylor number found among all groups of probable eigenvalues. 

3. Numerical procedure 

form : 

Since (1 1) yields Ta = f(u, n, A) ,  minimizing Ta requires 

The requirement that the determinant should vanish is expressed in a functional 

(11) det = F(Ta, cr, n, A )  = 0. 

In reality it is not possible to cause the determinant to be identically zero. Therefore 
the determinant is instead minimized with respect to the eigenvalues: 

Conditions (13) and (12) were used as basic criteria for the critical Taylor number 
and associated eigenvalues. 

In  the iteration procedure to determine the critical values it is known (i) that the 
critical Taylor number increases monotonically with axial Reynolds number and (ii) 
that the tangential wavenumber should be an integer and increase with Reynolds 
number. Starting with available values of Ta, and h found by Sparrow et al. (1964) 
and Astill & Chung (1976) with cr = n = 0 for Re = 0, iteration continues for increasing 
Re. For a guessed Ta and n, the minimum determinant is obtained by iteration of a 
pair (p, A) ,  where ,8 is defined as the ratio - u/h. The results of this search are shown 
graphically in figure 1. p was found to be more sensitive than h in the determination of 
the minimum determinant and remained almost unchanged in the neighbourhood 
of the given Ta when n remained the same. Therefore, in searching for p and A, the 
increment AP was kept as small as possible. Once had been found for a given Ta 
only a little more iteration of p was necessary for the adjacent values of Ta. Loci of 
the minimum determinant in figure 1 are shown in figure 2 as solid and dashed curves 
for a wide range of Fa. The dashed curves result from improper selection of n for the 
range of Ta. In  the figure Ta, is the most likely value of the critical Taylor number 
with n = n,. When the minimum determinant in the region of n = n2 is only slightly 
larger than that near n,, it  is safer to select both Ta, and Ta, as critical values. Usually 
in this case Ta, and Ta, are very close. One Fortran program handles the procedure 
of selecting n and p as well as approximating h and Ta, as shown in figures 1 and 2. 
Another program iterates Ta, and h with the appropriate values ofn andp. 

Arithmetic precision appeared to be important in terms of the range of Re. Single- 
precision computation worked well only when the Reynolds number was low, say 
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FIGURE 1. Schematic representation of searching for a combination (B, A) which 
gives the minimum determinant for a given Ta and n. 

FIGURE 2. Schematic representation of searching for the critical Taylor number 
with variation of the tangential wavenumber 7 ~ .  

Re < 100, for N = 0.95. For higher values of Re numerical error caused the deter- 
minant data to be scattered, owing to which determination of critical values was not 
decisive. Double-precision arithmetic extended the computable range of Re consider- 
ably, giving clear differentiation among the critical values. 

The step size of the Runge-Kutta integration also influenced the values of Ta,. 
Theoretically more steps will give greater accuracy. On the basis of trial calculations 
employing 10,20 and 30 steps, a 20-step calculation was used throughout the iteration. 

4. Results and discussion 
The present analysis was performed for the case where the instability occurs in 

fully developed flow. The steady parts of the axial velocity and circulation function 
are respectively 

(14) 
1 + ( T / T ~ ) ~  + [ (N2  - l)/h N ]  In (r /rz)  

1 + N z - ( N 2 -  l)/lnN 
Fd = 2 
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Re 

0 
0.1 
1 
2 
5 

10 
20 
35 
50 
75 

100 

150 

200 

300 

n 

0 
0 
0 
0 
0 
0 
1 
2 
4 
7 

10 
11 
12 
13 
14 
14 
15 
16 
16 
1’; 

h 

3.128 
3.133 
3.154 
3.157 
3.172 
3.17 
3.07 
3.04 
3.47 
3.05 
2.81 
2.90 
2.76 
2.26 
2-31 
2.27 
2.03 
2.02 
1.78 
1.75 

B 
0 
1.171 
1.171 
1.171 
1.171 
1.17 
1.26 
1.29 
1.37 
1.55 
1-76 
1.80 
1.84 
2.09 
2.13 
2.08 
2.28 
2.36 
2-39 
2.48 

Tac 
184.991 
184.992 
185.072 
185.29 
186.79 
192.06 
211.8 
261.0 
323.2 
444.6 
553 
547 
752 
75 1 
739 
920 
915 
907 

1218 
1200 

TABLE 1. Critical Taylor numbers and corresponding values of n, h 
and B for given values of Re when N = 0.95 and p = 0. 

and 

where p = Q2/Q1 and N = Rl/R,. The fully developed circulation function VFa has 
been made non-dimensional with Ql R,. Since the governing equations are general, 
solution is possible for any cylinder geometry as long asp/N2 < 1 (Rayleigh’s criterion 
for instability). Computations were performed for N = 0.95, 0.75, 0.5, 0.25 and 0.1 
with the inner cylinder rotating. Calculations were made for Reynolds numbers as large 
as 300 N 400. Solutions with both cylinders rotating were obtained for N = 0.95 with 
Re 6 200. Referring to the solutions by Sparrow et al. (1964) and by Astill & Chung 
(1976), solutions were evaluated and compared for Re = 0 in the geometries and con- 
ditions of the earlier work. 

Inner cylinder rotating 
In  table 1 the variation of the critical Taylor number Ta, with Reynolds number for 
N = 0.95 and p = 0 is tabulated with the associated eigenvalues 8, n and A. Since in 
the first few cases the Reynolds number increases in small steps, three significant figures 
past the decimal point were retained to differentiate among the results. remains 
almost unchanged for low values of Re. The axial wavenumber h increases slightly 
with Re. For Re = 20 the presence of a single pair of vortex spirals was evident. Both 
the determinant and Ta, with n = 0 were a little larger than those with n = 1, which 
suggests that for Re = 20 the prevailing secondary flow is spiral. For higher Reynolds 
numbers, each case requires several trial values of n. Two or three n’s are listed with the 
other eigenvalues as possible values for the critical state. Here determination was not 
decisive since the determinant increases only a little with n while Ta, decreases. 
Whenever the number of spirals increased, the magnitude of h and /3 also changed 
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FIGURE 3. Comparison of the critical Taylor numbers Ta, when N = 0.95 and p = 0. 0, Hughes 
& Reid (1968), N + i ;  0 ,  Snyder (1965), N = 0.96; __ , present non-axisymmetric results; 
--- , present axisymmetric results. 

drastically, which was first observed numerically in the present analysis. It should be 
noticed that the sudden increase in p is not because of a large change in g, but rather 
because of a step decrease in the axial wavenumber A. The decrease in h implies that 
with the increasing number of spirals the axial wavelength also increases drastically, 
adjusting to the new pattern of spiral flow. Beyond Re = 300 determination of Tac 
etc. was not conclusive. 

In  figure 3 the results of Hughes & Reid (1968) and the experimental results of 
Snyder (1965) are compared with the present non-axisymmetric results. The results 
of Hughes & Reid (1968) were based on a small gap and axisymmetric perturbations 
for the high Reyholds number domain, where the dominant mechanism of instability 
is of the Tollmien-Schlichting type. For interest, solutions were obtained under the 
assumption of axisymmetry ( n  = 0 )  and are compared with various results found by 
others and with the present non-axisymmetric results in table 2 and figure 4. The 
conventional Taylor number Taz is used for direct comparison. The relationship 
between the two Taylor numbers is Ta* = 2 Ta‘%/(R, + R2).  The overall results for 
Taz agree closely up to Re = 50 but differ by as much as a factor of two for Re = 100 
on the Ta,* scale. The results of Krueger & DiPrima (1964), which are an improve- 
ment on DiPrima’s previous work (1960), are very close to the present results in the 
range of Re computed. The recent data obtained by Elliot (1973) were based on the 
same approach as that of Krueger & DiPrima (1964), but were obtained with more 
terms in the trial eigenfunctions in the Galerkin formulation. Elliot’s results agree 
best with the present axisymmetric results in the entire range of Re considered. The 
analyses by Sparrow et aZ. (1964) and by Astill & Chung (1976) indicate that, for 
Re = 0,  Ta,* decreases with increasing radius ratio in the vicinity of N = 0.95. Con- 
sequently, it  is expected that the values of Ta,* for thesmall-gap approximation ( N  = 1) 
should be lower than those for N = 0.95 from the present axisymmetric solution 
at least for low Reynolds numbers. The values of h and p for the axisymmetric 
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(4 (6 )  (4 (4 
r - - -+&&& 

Re h $ Ta: A $ Ta,* h $ Ta,* h W o p  Taz 

0 3.1 - 1715 3.12 - 1696 - - - 3.23 - 1710 
1 - -  - 3.13 1.17 1698 3.12 1.17 1696 - - - 
2(0*02)t - - - - _ -  3.12 1.17 1700 3.15 1.19 1823 
5(0-17)$ 3.1 0.813 1753 3-13 1.17 1729 3.13 1.17 1729 3.11 1.19 1883 

20(0.67)$ 3.4 0.819 2309 3.17 1.16 2236 3.16 1.165 2275 - 1.16 2400 
40 4-2 0.839 3881 3.20 1-15 4025 3.21 1.155 4036 3.40 1.16 4088 

80 6.0 0.885 8319 - - - 2.97 1-12 12810 4.75 1.07 9550 

lO(0’34)t - - - 3.13 1.16 1838 3.14 1.17 1832 - - - 

60 5.2 0.866 5962 3.13 1.14 7459 3.2 1.14 7430 3.96 - 6 850 

100 6.6 0.900 10876 - - - 2.61 1.08 20340 5.40 - 12 700 

(4 (f) 
f 

A 
3 7  

A 
\ 

Re n h B Ta,* n h B Tar 

0 0 3.128 - 1755 0 3.128 - 1755 
1 0 3-154 1.171 1756 0 3.154 1.171 1756 
5 0 3.172 1.171 1789 0 3.154 1.171 1789 

10 0 3-17 1.17 1892 0 3.17 1.17 1892 
20 1 3.07 1.26 2300 0 3.36 1-17 2 322 
35 2 3-04 1.29 3493 0 3.46 1.16 3 563 
50 4 3.47 1.37 5356 0 3.50 1.16 5 649 
75 7 3-05 1.55 10 137 0 3.65 1-15 11571 

100 11 2.90 1.80 15344 0 3.68 1.15 21600 

7 Results (d). $ Results (c). 

TABLE 2. Comparison of the present results with existing data for the case N = 0.95 and p = 0. 
(a)  Variational method of Chandrasekhar (1960). (b) Galerkin method of Krueger & DiPrima 
(1964). (c) Galerkin method of Elliot (1973). (d )  Experiment of Snyder (1962). (e) Non-axisym- 
metric and (f) axisymmetric solution from the present analysis. (a)-(c) N -+ 1 with approximate 
profiles of axial and tangential velocity. (d) N = 0.948. 

case from the present and other analyses are in close agreement. h increases mono- 
tonically with Re while p decreases slightly. The ratio /3 can be identified as the ratio 
of the drift velocity of the vortices to the mean axial velocity: Wd/w.  This has 
been measured experimentally. In  the non-axisymmetric solution the variation of h 
and p with Re was different. h appeared to increase slightly with Re while n remained 
constant, but whenever n increased a sudden drop occurred in A, which in turn resulted 
in a step increase in p. The difference in the variation of A and ,8 between the present 
results and Snyder’s experiments (1962, 1965) remains unexplained. 

The variation of Ta, with Re is given in tables 3 and 4 for N = 0.75 and 0.5 with 
,!L = 0. The results for A and ,8 behave similarly to those for N = 0-95. The tangential 
wavenumbers n are smaller than those for N = 0.95, which implies that there are 
fewer spirals in the flow in a larger gap. Results for N = 0.25 and 0.1, which are not 
listed here in detail, show that the secondary flows for these two cases are always 
axisymmetric (n = 0 )  in the range of Reynolds numbers investigated: Re < 150 for 
N = 0.25 and Re < 100 for N = 0.1. For these small radius ratios, iteration was easier 
because n is a small integer and an improper selection of n would cause a distinctive 
change in the determinant and consequently in Tu,. 
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FIGURE 4. Comparison of the critical Taylor numbers Ta,* with existing data. -, present 
non-axisymmetric results; ---, present axisymmetric results; , Chandrasekhar (1960) ; a ,  
experiment by Snyder (1962); 0, ICrueger & DiPrima (1964); x , Elliot (1973). All point data 
are for N + 1 except Snyder's, for which N = 0.948. 

Re n A B Ta, 

0 
0.1 
1 
2 
5 

10 
20 
35 
50 
75 

100 
150 
200 
300 

0 
0 
0 
0 
0 
0 
1 
1 
1 
2 
2 
3 
3 
3 

3.135 
3.146 
3.144 
3.148 
3.163 
3,165 
3.14 
2.82 
2.95 
2.32 
2.20 
1.62 
1:30 
1.03 

0 
1-172 
1.172 
1.172 
1.172 
1.171 
1.40 
1-34 
1.30 
1.52 
1.52 
1.86 
1.95 
2.00 

85.779 
85.780 
85.812 
85.991 
86.60 
89.02 
98.1 

120.5 
148.8 
204.6 
258 
319 
375 
465 

TABLE 3. Critical Taylor numbers and corresponding values of It, h 
and /3 for given values of Re when N = 0.75 and ,u = 0. 



650 K .  C. Chung and K .  N .  Astill 

Re n h P Tao 

0 0 3.151 0 68.189 
0. 1 0 3.154 1.181 68.189 
1 0 3.175 1.181 68-214 
2 0 3-178 1.182 68.290 
5 0 3.192 1.181 68.818 

10 0 3-190 1.180 70.67 
20 0 3.074 1.174 77.90 
35 0 3.04 1.164 96.0 
50 0 2.96 1.15 120.8 

1 2.51 1.48 114.2 
75 1 2.87 1.39 146.1 

100 1 2.52 1.40 184 
150 1 2.10 1.42 25 1 
200 1 1.61 1.49 299 
300 1 1.25 1.52 369 

TABLE 4. Critical Taylor numbers and corresponding values of n, h 
and B for given values of Re when N = 0.5 and p = 0. 

3 

1 OS 

5 

." 
0.95 0.75 0.5 0.25 0.10 

N 

FIGURE 5. Variation of the critical Taylor number Ta: with the radius ratio N and the Reynolds 
number Re. -, present results; 0, Snyder (1962); 0 ,  Snyder (1965); 0 ,  Krueger & DiPrima 
(1964); +, Coney & Mobbs (1970). 
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Re Present analysis Krueger & DiPrima (1964) 

651 

r A 
\ t  A 

-l 

n h B Ta: h B Ta: 

0 0 3.14 0 2378 3.11 0 2278 
1 0 3.12 1.17 2380 3-11 1.17 2 280 
5 0 3.14 1-17 2 424 3.11 1.17 2 322 

- 3.13 1-17 2 456 10 - 
20 1 3.02 1.32 3 141 3.15 1.17 3 006 

- 3-17 1.15 5 420 40 - 
50 3 3-01 1-44 7 645 - - - 

100 6 2-11 1.80 28 693 - - - 
6 1.93 2.04 29 465 - - - 

200 8 1.34 2-80 94 991 - - - 
9 1.30 3-05 92 082 - - - 

p = 0.45 p = 0.5 

- - 
- - 

p = - 1.0 p = -1.0 

0 0 4-21 0 6310 4.0 0 4 724 
1 0 4.19 1.10 5314 4 0  1-14 4 725 
5 0 4.17 1.10 6371 4.0 1.11 4773 

10 - - - - 4.0 1.10 4916 
20 1 3.43 1.20 6 257 4.1 1.10 5436 
40 - - - - 4.2 1.07 6 967 
60 4 2.92 1.30 8 287 

100 8 2-32 1-40 16313 
200 10 2.10 1.48 36 630 

- - - 
- - - 
- - - 

TABLE 5. Comparison of the present results for both cylinders rotating and 
N = 0.95 with those of Krueger & DiPrima (1964) for N + 1. 

The overall results for Ta: are shown in figure 5 cross-plotted with various radius 
ratios for several Reynolds numbers. Included on the curves for comparison are some 
representative experimental and analytical results from other researchers. 

Both cylinders rotating 

The cases with both cylinders rotating were computed in the same manner for N = 0.95 
with Re = 0 - 200. A single case was considered for each type of rotation: p = 0.45 
for co-rotation and p = - 1 for counter-rotation. For the counter-rotating case the 
determinant data showed some scatter, which was also encountered by Sparrow et al. 
(1964) and by Astill & Chung (1976) a t  Re = 0. The behaviour of /3, n and h was similar 
to that with p = 0. The number of spirals for these two cases was a little smaller than 
that with only the inner cylinder rotating a t  the same Reynolds number. As shown 
in table 5 and in figure 6, the trend of the results for Ta: agree well with those found 
by Krueger & DiPrima (1964) and by Snyder (1965) for both cases. Since the results 
of Snyder shown in figure 5 were plotted from the figures of his paper (1965), they can 
give only an approximate comparison. The difference in Tuz between the results of 
Krueger & DiPrima (1964) and Snyder (1965) seems to be partly due to the difference 
in the radius ratios: Snyder’s apparatus had a finite gap ( N  = 0.959) while the analysis 
of Krueger & DiPrima was based on a small gap ( N  N 1).  Beyond Re = 80 the overall 
results for Ta,* of Snyder are lower than the present results and the difference increases 
with Re. 
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1 0 3  I 1 1 1 1  I I 1  I I I 1  

1 2 3 4 5 10 20 30 50 100 200 300 
Re 

FIGURE 6. Comparison of the variations of the critical Taylor number Ta: with ,u and Re for 
N = 0.95. The curves represent the present results. Snyder (1965), N = 0.96: ,,u = 0; A ,p = 0.5; 
0 , p  = - 1.0. Krueger &DiPrima (1964), N + l :  A , p  = 0.5; 0 , p  = - 1.0. 

Vortex spirals -- 

- 
Mean steady flow 

x = 2  n/A =axial wavelength 

A y = 2 n / n  =tangential wavelength 

(0 )  (b)  
FIGURE 7. (a) Schematic representation of the direction of the mean steady flow and the inclination 

of the vortex spirals. (b) Drawing for inspection of spiral inclination. 

Direction of spiral inclination 
It is possible, from the present analysis, to determine the inclination of the vortex 
spirals with respect to the direction of the steady flow velocity. Consider the argument 
at + nB + hz in the perturbation (1). Let the time be fixed as zero. Then set the spatial 
co-ordinates of point A at the origin (0,O) in figure 7 ( b ) ,  where AT and are defined. 
A perturbation mode at A ,  say mode A ,  will reappear a t  C, D and C'. What happens 
at  F, an arbitrary point on CD T Between A and F the increment of the argument is 

--- 
noo + hzo = n(AD/AC) CE + A(m- CE) 
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FIUURE 8. Mode shapes: real and imaginary parts of the amplitude functions and maximum real 
parts of the perturbation modes. Figures in brackets are phase-angle differences (degree) of the 
perturbation velocities from the radial perturbation velocities. N = 0.95, n = 0. (a) Re = 10, 
,LA = O,h = 3.170,p = 1.170, Ta = 192.06. (b)  Re = 1,p z - l , h  = 4-190,/3 = 1.098, Ta = 321.866. 

A similar inspection at  an arbitrary point on C‘D does not produce 27r, which implies 
that mode A can appear only along CD and on lines parallel to CD equally spaced 
in the z direction by an axial wavelength 27r/h. Therefore, from simple inspection of 
the argument, it  is concluded that inclination of the vortex spirals is in the direction 
opposite to that of the mean flow as shown in figure 7 (a) ,  which agrees with Snyder’s 
(1965) observation. 

Mode shapes of the perturbation velocities 
When mode shapes are to be computed at  the critical state, the undetermined co- 
efficients Ci ( j  = 1,2,  . . ., 6) must be found. Since the system of algebraic equations 
(12) is homogeneous, the determinant should vanish for a non-trivial solution for the 
Ci, which is generally not possible. Therefore an approximate method was employed. 
Equations (12) are expressed as 

[4jIcrit{Cj} = {&}, i,j = 1,2, .*.) 6, (16) 

where Si represents a residual. Minimizing the sum of the residuals XSt leads to an 
approximate solution for the Ci (j  = 2,3,  . . ., 6) with C, = 1.  An example of the pertur- 
bation modes is shown in figure 8 (a) .  v’/r represents the tangential component of the 
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perturbation velocity. The real part of the perturbation velocity, which can be 
realized physically, is 

(17) 

where a = at + no + hz is constant at a given time and a t  a given point. The maximum 
mode shape and its phase angle a can be numerically computed in the range 0 < a < 2n. 
The maximum mode shape can be obtained directly by taking its magnitude 

.%?{+'(r, 8, z,  t ) }  = $ cos a - 4 sina, 

if the phase angle is not required. Equation (17) can be expressed as 

where K ,  is a variable phase angle which would be constant for Re = 0. The phase 
difference between u' and v'lr is known to be 2mn (m = 0 or 1) and that between u' 
and w' to be in + mn (m = 0 or 1) for Re = 0. Figure 8 (a)  implies that in the presence 
of axial flow the phase differences among the maximum perturbation modes vary with 
the Reynolds number. 

For counter-rotating cases the mode shapes hardly satisfy the terminal boundary 
conditions (8) as shown in figure 8 (b ) .  This was expected from the fact that for p < 0 
the determinant data had been somewhat scattered. 

5. Conclusion 
The method of solution described in this paper is simple in formulation but numeric- 

ally as complicated as an experiment. The non-axisymmetric perturbations allow the 
solution to be extended to high Reynolds number for any gap width or type of cylinder 
rotation. The present results for the critical Taylor number for the axisymmetric case 
agree very closely with the recent analytical data of others. The non-axisymmetric 
results generally agree well with limited experimental data, except for the variation 
of the axial wavenumber h with the Reynolds number Re. In the present analysis the 
axial wavelength appeared to increase with Reynolds number whenever the number 
of spirals increased. It was also confirmed that the inclination of the vortex spirals is 
opposite in direction to the mainstream. 

After this paper was submitted for publication, two recently completed analyses 
of the flow stability in this geometry have come to the attention of the authors. Both 
treated the case of fully developed axial flow and should be mentioned. Hasoon & 
Martin (1977) predicted a critical Taylor number and critical wavenumbers for axi- 
symmetric flow. Using both a time-dependent finite-difference procedure and a 
solution employing the Galerkin method, they computed results for radius ratios 
between 0.81 and 0.95 and for Reynolds numbers up to 1000. Thomas (1974) treated 
the non-axisymmetric or spiral case, employing the same formulation as is used in 
the present paper. His solution differed from the present case in the shooting procedure 
used to solve the complex differential equations. Thomas used three shootings rather 
than the six shootings required in the analysis reported here. Thomas (1974) computed 
results for a radius ratio of 0.895 and for Reynolds numbers less than 63. 

Because of the radius ratios chosen by the several authors, it  is difficult to compare 
results. It is fair to say that there is good agreement among the critical Taylor numbers 
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predicted. Differences are apparent among the critical axial wavenumbers predicted 
by the three studies. A detailed comparison of the three analyses should perhaps be 
undertaken in the near future. 

The present method can be directly extended to problems (i) with a developing 
main flow and (ii) with a temperature gradient between the two vertical cylinders 
either with or without the steady axial flow. 

The numerical work was done with PDP-10 time-sharing system in the Computer 
Center of Tufts University. Fruitful comments made by Professor L. M. Trefethen 
are gratefully acknowledged. 
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